Heavyweight "R-SMS-Phos" Ligands in the Olefins' Hydrogenation Arena

Borut Zupančič,[†] Barbara Mohar,[†] and Michel Stephan*,^{†,‡}

*Laboratory of Organic and Medicinal Chemistry, National Institute of Chemistry, Hajdriho*V*a 19, SI-1001 Ljubljana, Slo*V*enia, and PhosPhoenix SARL, 115, rue de l'Abbe´ Groult, F-75015 Paris, France*

mstephan@phosphoenix.com; michel.stephan@ki.si

Received January 25, 2010

$[Rh((R,R)-t-Bu-sms-phos)(MeOH)₂]BF₄$

A series of enantiopure *^P***-stereogenic 1,2-bis[(***o***-RO-phenyl)(phenyl)phosphino]ethane (R-SMS-Phos) ligands wherein R**) *ⁱ***-Pr,** *ⁱ***-Bu,** *^t***-Bu, 3-Pen, and CH2TMS was assessed in the Rh(I)-catalyzed hydrogenation of an indicative set of olefins. The best performing** *t***-Bu-SMS-Phos ligand was** screened against a wide range of representative classes of standard and new olefinic substrates such as dehydroamido esters, dehydro- α **amido-phosphonates, enamides, itaconates, acrylates, enol acetates,** r**-phosphonovinyl benzoates,** r**-(2-pyridyl** *^N***-oxide)styrenes, and** r**-(1 hydroxyliminoethyl)styrenes. Excellent enantioselectivities and high TOFs were attained under mild conditions.**

Since the conception of the $Rh(I)-DiPAMP$ (DiPAMP= 1,2bis[(*o*-anisyl)(phenyl)phosphino]ethane) catalyst for the asymmetric hydrogenation of olefins more than four decades $ago₁$ ¹ stiff competition to attain higher catalyst performances is ever-increasing.2 In particular, *P*-stereogenic diphosphines have further advanced this field and are making a comeback. Innovation through optimization of chiral ligand designs with a proven track record is enticing for improved or even new industrial applications. A comprehensive survey of the literature reveals a number of study cases whereby diversification of a given diphosphine by judicious alterations was undertaken.^{2,3}

In our ongoing research focus on *P*-stereogenic ligands, $3n$ ^o we present herein our exploratory optimization results of our recently introduced 1,2-bis[(*o*-isopropoxyphenyl)(phenyl)phosphino]ethane $(i-Pr-SMS-Phos)$ ligand³⁰ for the Rh(I)-mediated hydrogenation of olefins. Higher homologues at the level of the branched alkoxy groups were prepared.

Isolated in $50-55\%$ overall yields following the Jugé-Stephan route⁴ or following a straightforward functionalization-decomplexation sequence from the crystalline 1,2 $bis[(o-hydroxyphenyl)(phenyl)phosphino-P-borane]ethane⁵$, the R-SMS-Phos (1,2-bis[(*o*-RO-phenyl)(phenyl)phosphino] ethane) series $(R = i-Pr, i-Bu, t-Bu, 3-Pen, and CH_2TMS)$ was screened under mild conditions in the asymmetric

ORGANIC

[†] National Institute of Chemistry.

[‡] PhosPhoenix SARL.

^{(1) (}a) Knowles, W. S.; Christopfel, W. C.; Koenig, K. E.; Hobbs, C. F. *Ad*V*ances in Chemistry Series*; American Chemical Society: Washington D.C., 1982; Vol. 196, pp 325-336. (b) Knowles, W. S. *Angew. Chem., Int. Ed.* **2002**, *41*, 1998–2007.

^{(2) (}a) *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, Yamamoto H. Eds : Springer: Berlin 1999: Vols 1–3 (b) *Asymmetric* A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vols. 1-3. (b) *Asymmetric Catalysis on Industrial Scale*; Blaser, H. U., Schmidt, E., Eds.; Wiley-VCH: Weinheim, 2004. (c) *Handbook of Homogeneous Hydrogenation*; de Vries J. G., Elsevier C. J., Eds.; Wiley-VCH: Weinheim, 2006; Vols. 1-3.

^{*a*} The catalyst was prepared in situ from [Rh(nbd)₂]BF₄. Runs were carried out under 1 bar of H₂ (10 bar for **S7**) at rt in MeOH (0.5 mmol of substrate in 7.5 mL MeOH) with a $S/C = 100$ ($S/C = 1000$ for **S1**) for the time indicated (100% conversion) if not stated otherwise and are unoptimized. Typical isolated yields were >90%. Ee's were determined by chiral GC (prior to analysis the carboxylic group of hydrogenation product of **S7** was esterified with TMSCHN₂). With (*R*,*R*)-R-SMS-Phos, *S*-configured products were obtained except with **S6**. ^{*b*} In the presence of Et₃N (1.1 equiv). *c* 78% conversion. *d* 59% conversion.

hydrogenation of an indicative set of olefinic reference substrates **S1**-**S7** (Table 1). Within the adopted systematic bulkiness modification of the R groups, valuable changes in reactivity and enantioselectivity of the Rh(I)-(R-SMS-Phos) catalysts were noticeable. Operating with a S/C 100 in methanol at rt under 1 bar of H_2 , methyl α -acetamidoacrylate (**S1**: MAA) and cinnamate (**S2**: MAC) were hydrogenated invariably with >99% ee's within minutes. However, the best hydrogenation results of methyl (*Z*)- 3-acetamidobut-2-enoate (**S3**: (*Z*)-MAB) and its (*E*)-isomer (**S4**: (*E*)-MAB) were achieved with 3-Pen-SMS-Phos and *t*-Bu-SMS-Phos furnishing 84.4% and 97.3% ee, respectively. Further on, the hydrogenation of α -acetamidostyrene (**S5**: AS) and dimethyl itaconate (**S6**: DMI) also proceeded smoothly within minutes with an incremental increase in the ee, reaching, respectively, the maxima of 99.3% and 99.8% with *t*-Bu-SMS-Phos. Interestingly enough, the bulkiest 3-Pen-SMS-Phos and *t*-Bu-SMS-Phos designs afforded hydratropic acid from atropic acid (**S7**: AA) with reasonably good ee's, with up to 94.7% ee being attained with *t*-Bu-SMS-Phos. Hydratropic acid constitutes the basic model of nonsteroidal antiarthritics.⁶ Thus, among the screened ligand set, the *t*-Bu-SMS-Phos ligand emerged as being superior. Hence, the Rh(I)-(*t*-Bu-SMS-Phos) catalyst was screened under mild hydrogenation conditions against a selection of a broad diversity of conventional, more challenging benchmark and new classes of olefins **S8**-**S19** (Table 2).

High reaction rates coupled with excellent ee's were reached in the hydrogenation of virtually all of the considered various olefin groups.⁷ In particular, the representative standard test substrate MAC (**S2**) was hydrogenated (100% conversion) in 99.8% ee within 5.5 h using a S/C 30000. β , β -Disubstituted dehydro-(*N*-acetyl)alaninates (**S8** and **S9**) were hydrogenated equally well under 3 bar of H_2 in >99% ee within 2 h using a S/C

^{(3) (}a) Yamanoi, Y.; Imamoto, T. *J. Org. Chem.* **1999**, *64*, 2988–2989. (b) Gridnev, I. D.; Yamanoi, Y.; Higashi, N.; Tsurata, H.; Yasutake, M.; Imamoto, T. *Ad*V*. Synth. Catal.* **²⁰⁰¹**, *³⁴³*, 118–136. (c) Tang, W.; Zhang, X. *Angew. Chem., Int. Ed.* **2002**, *41*, 1612–1614. (d) Tang, W.; Zhang, X. *Org. Lett.* **2002**, *4*, 4159–4161. (e) Tang, W.; Zhang, X. *Org. Lett.* **2003**, *5*, 205–207. (f) Tang, W.; Wang, W.; Chi, Y.; Zhang, X. *Angew. Chem., Int. Ed.* **²⁰⁰³**, *⁴²*, 3509–3511. (g) Tang, W.; Zhang, X. *Chem. Re*V*.* **²⁰⁰³**, *¹⁰³*, 3029–3069. (h) Hoge, G.; Wu, H.-P.; Kissel, W. S.; Pflum, D. A.; Greene, D. J.; Bao, J. *J. Am. Chem. Soc.* **2004**, *126*, 5966–5967. (i) Liu, D.; Zhang, X. *Eur. J. Org. Chem.* **2005**, 646–649. (j) Grabulosa, A.; Granell, J.; Muller, G. *Coord. Chem. Re*V*.* **²⁰⁰⁷**, *²⁵¹*, 25–90. (k) Chen, W.; McCormack, P. J.; Mohammed, K.; Mbafor, W.; Roberts, S. M.; Whittall, J. *Angew. Chem., Int. Ed.* **2007**, *46*, 4141–4144. (l) *Phosphorus Ligands in Asymmetric* Catalysis; Börner, A., Ed.; Wiley-VCH: Weinheim, 2008; Vols. 1-3. (m) Gridnev, I. D.; Imamoto, T.; Hoge, G.; Kouchi, M.; Takahashi, H. *J. Am. Chem. Soc.* 2008, 130, 2560–2572. (n) Zupančič, B.; Mohar, B.; Stephan, M. *Adv. Synth. Catal.* **2008**, *350*, 2024–2032. (o) Stephan, M.; Šterk, D.; Mohar, B. *Ad*V*. Synth. Catal.* **²⁰⁰⁹**, *³⁵¹*, 2779–2786.

⁽⁴⁾ Jugé, S.; Stephan, M.; Laffitte, J. A.; Genêt, J.-P. *Tetrahedron Lett*. **1990**, *31*, 6357–6360.

⁽⁵⁾ Stephan, M.; Mohar, B. FR2887253, 2005; WO2006136695, 2006.

⁽⁶⁾ Kar, A. *Medicinal Chemistry*; New Age International Ltd.: New Delhi, 2005; pp 450-470.

⁽⁷⁾ For indicative literature data regarding Rh-catalyzed hydrogenation of these substrates with representative phosphines, see the Supporting Information.

Table 2. [Rh((*R*,*R*)-*t*-Bu-sms-phos)(MeOH)2]BF4-Catalyzed Hydrogenation of Miscellaneous Classes of Olefins*^a*

olefin		\mathbb{S}/\mathbb{C}	t, min	ee, % (config.)	olefin		\mathbf{S}/\mathbf{C}	t, min	ee, $\%$ (config.)
CO ₂ Me Ph' NHAc	S ₂	1000 10000 30000	13 3 _h 5.5 _h	99.8 _(S) 99.8 99.8	CO ₂ H CONH ₂	S13	1000	5	99.9 (R)
CO ₂ Me NHAc	S8	1000	2 _h	99.2(S)	CO ₂ H Ph	S7	100 ^b 100 ^c	2 _h 2 _h	94.7(S) 95.6
CO ₂ Me NHAc	S ₉	1000	2 _h	99.6 _(S)	OAc `Ph	S14	100 1000	30 5 _h	98.7(S) 98.7
PO(OEt) ₂ NHAc	S10	1000	6	99.9(R)	OAc CF_3	S15	100 1000	10 90	>99(S) >99
CO ₂ Et NPhth-	S11	100	30	94.6 (R)	CO ₂ Et Ph OAc	S16	100	2 _h	99.9 (S)
NHAc Ph	S ₅	1000 10000	20 4h	99.4(S) 99.3	$PO(OME)_2$ OBz	S17	100 1000	3 25	99.6 (R) 99.6
CO ₂ Me CO ₂ Me	S6	1000 10000 30000	15 3 _h 6 h	99.7(R) 99.4 99.4	$O + N$ Ph	S18	100 1000	τ 60	99.2(S) 99.2
CO ₂ H CO ₂ H	S12	1000	6	99.7(R)	۰N 'nо Ph	S ₁₉	100	4 _h	94.0 $(Z, +)$

^{*a*} The catalyst was prepared in situ from $[Rh(nbd)_2]BF_4$ and $(R,R)-t$ -Bu-SMS-Phos. Runs were carried out under 1 bar of H_2 (3 bar for **S8**, **S9** and 10 bar for **S7**, **S19**) at rt (50 °C for **S18**) in MeOH (0.5 mmol of substrate in 7.5 mL MeOH with a S/C = 100 or 1000; 10 mmol of substrate in 7.5 mL MeOH with a $S/C = 10000$; 30 mmol of substrate in 20 mL MeOH with a $S/C = 30000$ for the time indicated (100% conversion) and are unoptimized. Typical isolated yields were >90%. Ee's were determined by: chiral GC for **S2**, **S5**-**S10**, and **S12**-**S14** (prior to analysis the carboxylic groups of hydrogenation products of **S7**, **S12**, and **S13** were esterified with TMSCHN₂); chiral HPLC for **S11** and **S16**-**S19**; ¹H NMR (in the presence of (+)-Pr(hfc)₃) for hydrogenation product of **S15** ^b In the presence of Et₂N (0.05 product of **S15**. ^{*b*} In the presence of Et₃N (0.05 equiv). ^{*c*} In the presence of Cy₂NH (0.05 equiv).

1000, and α -acetamido-vinylphosphonate (S10) led to 99.9% ee within minutes. The latter result presents the highest ee ever reported for the hydrogenation of the corresponding substrate. Up to 94.6% ee was achieved in the hydrogenation of ethyl α -(phthalimidomethyl)acrylate (**S11**) which also constitutes the highest ee attained with this substrate under the given reaction conditions.⁸ Moreover, AS (**S5**) underwent hydrogenation using a S/C 10000 affording 99.3% ee within 4 h.

While a series of itaconates (**S6**, **S12**, **S13**) was hydrogenated with >99.7% ee within minutes using a S/C 1000, >99% ee was maintained with full conversion within 6 h for DMI (**S6**) using a S/C 30000.

A preliminary investigation on the variation of the reaction parameters toward hydratropic acid revealed that an incremental increase in the ee was feasible. Thus, the use of the bulkier $Cy₂NH$ amine (5 mol %) further upgraded the ee to 95.6%.

In a similar vein, a variety of enol acetates (**S14**-**S16**) and a α -benzoyloxy-vinylphosphonate (**S17**) were hydrogenated reasonably fast with exceptionally high ee's.

Namely, α -acetoxystyrene (S14), which presents a somewhat difficult challenge, was hydrogenated in up to 98.7% ee within 5 h using a S/C 1000. Here again, these results obtained under the given mild condtions are to the best of our knowledge the highest reported ones with these substrates.^{3e,m,o,9}

Finally, olefins **S18** and **S19**,¹⁰ which possess a "C-N-O"

otif at the α position, were hydrogenated in 00.2%, and motif at the α -position, were hydrogenated in 99.2% and 94.0% ee, respectively.

In conclusion, the hydrogenation under mild conditions with excellent ee's and high TOFs of a wide spectrum of representative classes of olefins catalyzed by [Rh(*t*-Bu-sms $phos$)(MeOH)₂] catalyst represents the advantages of this novel catalytic system. The overall results obtained with this catalyst are among the best ever reported in Rh-phosphine catalyzed hydrogenation.

^{(8) (}a) Huang, H.; Liu, X.; Deng, J.; Qui, M.; Zheng, Z. *Org. Lett.* **2006**, *8*, 3359–3362. (b) Deng, J.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. *J. Org. Chem.* **2008**, *73*, 2015–2017.

⁽⁹⁾ Wang, D.-Y.; Hu, X.-P.; Huang, J.-D.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Xu, X.-F.; Zheng, Z. *Angew. Chem., Int. Ed.* **2007**, *46*, 7810–7813.

⁽¹⁰⁾ Our NOESY analysis (see the Supporting Information) of **S19** and its hydrogenated product revealed a *syn*-conformation for both oximes. In the literature, **S19** was presented with an *anti*-conformation. For this, see: (a) Tishkov, A. A.; Lesiv, A. V.; Khomutova, Y. A.; Strelenko, Y. A.; Nesterov, I. D.; Antipin, M. Yu.; Ioffe, S. L.; Denmark, S. E. *J. Org. Chem.* **2003**, *68*, 9477–9480.

Acknowledgment. This work was supported by the Ministry of Higher Education, Science, and Technology of the Republic of Slovenia (Grant No. J1-9806) and by the Ministry of National Education, Research, and Technology of France (Grant No. 00P141) to PhosPhoenix SARL. We thank Damjan Šterk for partial assistance.

Supporting Information Available: Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100184P